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ABSTRACT

This paper presents a method for the analysis

inside a rectangular waveguide. The moment method

dyadic Green’s function.

Introduction

Waveguide obstacles and discontinuities, includ-
ing the dielectric type to be discussed in this paper,
are long standing problems in electromagnetic theory.

Although many two-dimensional problems have been solved,

the general three–dimensional problems remain unsolvedl.
This paper presents a successful use of the dyadic
Green’s function in the analysis of a three–dimensional
arbitrarily–shaped dielectric or biological body
inside a rectangular waveguide. Major difficulties
include a correct expression for the Green’s function

and the treatment of the extremely slow convergence
of the double infinite series in the formulation.

Tne Integral Equation and the Dyadic
Green’s Function

The problem to be considered is shown in Figure 1.
The dielectric body is in general heterogeneous. The

volume equivalence principle can be shown to be valid
in the bounded as well as the unbounded space. An
integral equation can be formulated as follows:

where e-jut convention is used, and the equivalent
current J is—

The dyadic Green’s function ~ had been presented and

later corrected by Tai2 in a-short form. The explicit

expression, which has never been correctly exhibited
in the literature, is a double infinite series of 9
dyadic components summing up all the waveguide modal
contributions .

Solution By The Moment Method—

Equation (1) is an integral equation which can be
solved by the standard method of moments. In the
present analysis, the dielectric body is divided into

rectangular–sided cells of constant dimensions. The

equivalent current J in Equation (2) can be expanded
in terms of a set o~ basis functions which are pulse

functions.

of three-dimensional arbitrarily-shaped dielectric obstacles

is used to solve an integral equation formulated with a

We can generate a set of linear equations by per-

forming weighted scalar product on Equation (l). The

unknown current or electric field intensity can then
be solved on a digital computer.

A major difficulty was encountered in the process
of generating the matrix elements. The dyadic Green’s

function is in the form of a double infinite series of

slow convergence. It was observed that the convergence

is slower for obstacles of higher dielectric constant
and is extremely slow for the self cells or diagonal
elements in the matrix. Figure 2 shows a case in which

a diagonal matrix element is not convergent even after
140 x 140 terms have been included in the calculations.

The difficulty was overcome with a partial summatic,n
technique which transformed the expression into either

a closed form or a single infinite series. It can be

seen in Figure 2 that convergence is achieved with
about 20 x 20 terms when the partial summations techn-
ique is employed.

Numerical Examples and Supporting Measurements

Three cases, as shown in Figure 3, are presented.
All of the test cases consist of homogeneous dielectric
bodies with rectangular–sided walls aligned with the

waveguide walls. This choice of geometry conformal to

the Cartesian coordinate is mainly for the sake of

simplicity in data management and should not result in
any significant loss of generality as was noted in the

free space case. It was observed that the linear cell

dimensions should be k/2 (A being the wavelength inside

the dielectric body) or less in order to yield accurate
data. Figure 4 shows good agreement in the reflection
and transmission properties of Case B between a 12-cell

calculation and the measured data using a model made
of, a silica compound. A 12-cell calculation from Csse
A, being also a case of low dielectric constant, yields

a POwer reflection coefficient of 0.114 at 2.65 GHz,
dropping down to 0.035 at 3.5 GHz, which was verified

experimentally with a paraffin wax model.

Case C involves a model of high and frequency-

dependent constant for which more cells are needed for
calculation. The experimental model was made by

mixing water, powdered polyethylene and a modeling

compound called “Super Stuff”. The measured and cal–
culated data are compared in Figure 5, in which the
agreement is not as good as the low dielectric–constant
cases. This degraded accuracy of the calculation was
primarily due to the large cell dimension in terms of
the wavelength inside the dielectric body. For example,

the y dimension of

about 0.52A at 2.5

each cell is 0,8833 cm, which is
GHz and 0.681 at 3.1 GHz.
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Satisfactory convergence of the present numerical
model as a function of the number of cells used has

been observed in these cases. In addition to the

rapid convergence of reflection and transmission
coefficient, the field distribution also converges
fairly well. Figure 6 shows two typical examples for
medium and high dielectric constants. Measurements
of the temperature profile on the surface of the
dielectric body were also conducted for Case C at

several frequencies using thermographic paper. The

calculated distribution of dissipated power agrees
reasombly well with the heating pattern recorded on

the thermographic paper.

Concluding Remarks

A general three-dimensional waveguide dielectric
obstacle has been successful treated. Thie general

method can be applied to a number of waveguide

problems including the waveguide enzyme–inactivation

problem for which this study was initiated. An
immediate extension of this technique would be to

ferromagnetic obstacles.
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Figure 3 . Configuraci.ns of the three csses studied
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Figure 4. Comparison between calculated and measured

reflection and transmission characteristics
for case B of low dielectric constant.
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Figure 6. Convergence of field distribution ( at y =

1.325 cm, z = 0.0 ) for caae C at 2.8 GHz

with high and medium dielectric constants.
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Figure 5. Comparison between measurements and
calculations of various numbers of cells for

case C of a high dielectric constant.
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